COMMON ELECTRICAL DISTRIBUTION SYSTEMS

120/240 Volt Single Phase Three Wire System

t . Line one ungrounded conductor colored Black.

+ · Line two ungrounded conductor colored Red.

** Grounded neutral conductor colored White or Gray.

120/240 Volt Three Phase Four Wire System (Delta High Leg)

- + A phase ungrounded conductor colored Black.
- †* B phase ungrounded conductor colored Orange or tagged (High Leg). (Caution - 208V Orange to White)
- t . C phase ungrounded conductor colored Red.
- ** Grounded conductor colored White or Gray. (Center tap)

** Grounded conductors are required to be white or gray or three white stripes. See NEC 200.6A.
* B phase of high leg delta must be Orange or tagged.

+ Ungrounded conductor colors may be other than shown; see local ordinances or specifications.

How electrical service effects cost

- <u>https://www.peninsulacleanenergy.com/wp-content/uploads/2020/08/PCE_SCVE-EV-Infrastructure-Cost-Analysis-Report-2019.11.05.pdf</u>
- In the chart in the "Secondary Transformers (customer-owned)" section.
 - So, in that chart, the blue cost is the effect of J1772 level 2 not supporting 277VAC
 - "In particular, attention should be paid to the 300kV load point, which may cause considerable cost escalation as the electrical service would switch from 208V/120V to 480V/277V."
 - Many commercial / urban sites will pay about 50% more for the an AC EVSE without 277VAC

Typical commercial site with mixed DC and J1772 Level 2 AC charging

*some DC charging stations support 208/120V but *typically* at <=50kW

Typical communication site with mixed DC and NACS AC Charging

Why secondary transformers matter \$\$\$

- Dropping the voltage (277VAC -> 208VAC)
 - Increased current 33% for same power
 - Larger conduit
 - Larger wires
- Need a secondary panel board
- Additional grounding requirements
- Because of the additional transformer & panel space
 - Affects the ability to fit charging stations for street parking

NACS AC Voltage Input support

Specifications

The maximum power rating for the Wall Connector is 20 kW or 80A at 250V AC single-phase power. Your vehicle can charge from 200V to 277V single-phase power.

Description	Specifications
Voltage and Wiring	277V AC single-phase: L1, neutral, and earth
	208V or 240V AC single-phase: L1, L2, and earth
Current	Maximum output: 80A, 72A, 64A, 56A, 48A, 40A, 36A, 32A, 28A, 24A, 20A, 16A, 12A
Frequency	50 to 60 Hz
Cable Length	8.5' (2.6 m) and 24' (7.4 m)
Wall Connector Dimensions	Height: 15.0" (380 mm)
	Width: 6.3" (160 mm)
	Depth: 5.5" (140 mm)
Top Entry Bracket Dimensions	Height: 10.8" (275 mm)
	Width: 15.1 " (130 mm)
	Depth: 2.0" (50 mm)
Weight (including bracket)	20 lb (9 kg)
Operating Temperature	-22°C to 122°C (-30°C to 50°C)
Storage Temperature	-40°F to 185°F (-40°C to 85°C)
Enclosure Rating	Type 3R
Agency Approvals	cULus listed for United States and Canada under file number E354307, FCC Part 15.

Except from Tesla wall box (80A model) Gen2

https://www.tesla.com/sites/default/files/pdf s/wall-connector-eu/tesla-80a-wallconnector-installation-manua-en-v1.pdf

NACS AC Voltage Input support

ProMountDuo™ PEDESTAL INSTALLATION GUIDE

INSTALLATION REQUIREMENTS AND CONFIGURATIONS (continued)

CONFIGURATION F: Required Equipment for a Single-Mount Pedestal with one TESLA[®] EVSE (One EVSE per Pedestal):

- One (1) ClipperCreek ProMountDuo[™] Kit, ClipperCreek part number 0300-00-025.
- One (1) TESLA[®] EVSE, TESLA[®] part number 1050067-01-E.
- One (1) dedicated 208, 240 or 277 V AC branch circuit.*
- One (1) circuit breaker appropriately sized for the EVSE charging capacity.*
- Two (2) Live Line conductors that are appropriately sized based on the EVSE power requirements (5 feet of length is adequate).

CONFIGURATION F

Except from Clipper Creek Manual

https://www.clippercreek.com/wp-content/uploads/2018/03/PMD-10T-Installation-Guide_Version-11_20171122_Final.pdf

NACS AC Voltage Input support

- Since the Model S was released 277VAC support has been there
- This is a good thing ---- this removes the requirement of intermediate customer-owned transformers because many (most) large commercial sites get 480/277Y from the utility this is a cost reduction for AC charging buildout
 - Decrease transformer losses by 2-4% by eliminating secondary transformers at commercial sites
 - 25% increase in power for the same amperage rating over typical 208VAC
 - Decrease I^2R losses for same power level
- Some Telsa Wall boxes (Gen3) don't support 277VAC, but that is specific that product and it's listing
- Lack of 277VAC support is a <u>Disadvantage</u> for J1772